II Semester B.A./B.Sc. Examination, May/June 2018 (CBCS) (F+R) (2014-15 and Onwards) MATHEMATICS (Paper – II)

Time: 3 Hours

Max. Marks: 70

Instruction : Answer all Parts.

PART – A

Answer any five questions :

 $(5 \times 2 = 10)$

- a) On the set Q_1 the set of all rational numbers other than 1, * is defined by $a * b = a + b ab \ \forall \ a, b \in Q$. Find the identity element.
- b) Prove that in a group G, $(a^{-1})^{-1} = a \forall a \in G$.
- c) Find the angle between the radius vector and the tangent to the curve $r = ae^{\theta \cot \alpha}$.
- d) Find the length of the polar subtangent for the curve $r = a \sec 2\theta$.
- e) Find the asymptotes parallel to the coordinate axes for $(x^2 + a^2) y = bx^2$.
- f) Find the length of an arc of the cycloid $x = a (\theta + \sin \theta)$, $y = a (1 \cos \theta)$.
- g) Show that the equation $(x^2 2xy + 3y^2) dx + (y^2 + 6xy x^2) dy = 0$ is exact.
- h) Solve: $P^2 4P + 3 = 0$ where $P = \frac{dy}{dx}$.

PART - B

Answer one full question:

(1×15=15)

- 2. a) Let G be the set of all rational numbers and * be the binary operation on G defined by $a*b=\frac{ab}{7} \ \forall a,b\in G$ then prove that (G,*) is an abelian group. Solve $4*x=3^{-1}$.
 - b) Prove that $G = \{1, 5, 7, 11\}$ is a group under multiplication modulo 12.
 - c) Prove that a non-empty subset H of a group (G, *) is a subgroup of G, if and only if
 - i) $a * b \in H$, $\forall a, b \in H$
 - ii) $a^{-1} \in H$, $\forall a \in H$.

OR

P.T.O.

- 3. a) Prove that every group of order 4 is abelian.
 - b) Prove that $G = \{2^n/n \in Z\}$ is a group under multiplication.
 - c) Prove that $H = \{1, 2, 4\}$ is a subgroup of the group $G = \{1, 2, 3, 4, 5, 6\}$ under multiplication modulo 7.

PART - C

 $(2 \times 15 = 30)$

Answer any two full questions:

- 4. a) With usual notations, prove that $tan \phi = r \frac{d\theta}{dr}$ for the polar curve, $r = f(\theta)$.
 - b) Show that the curves $r = a (1 + \cos\theta)$, $r = b(1 \cos\theta)$ intersect orthogonally.
 - c) Show that the evaluate of the parabola $y^2 = 4ax$ is $27ay^2 = 4(x 2a)^3$.

OR

- 5. a) Find the angle of intersection of the curves $r = \sin\theta + \cos\theta$ and $r = 2 \sin\theta$.
 - b) Derive the formula for radius of curvature in parametric form.
 - c) Find the pedal equation of the curve $x^{2/3} + y^{2/3} = a^{2/3}$.
- 6. a) Find all the asymptotes of the curve

$$2x^3 - x^2y - 2xy^2 + y^3 - 4x^2 + 8xy - 4x + 1 = 0.$$

- b) Find the surface area of the solid generated by revolving about the y-axis the curve $x = y^3$ from y = 0 to y = 2.
- c) Find the position and nature of the double points of the curve

$$x^3 - y^2 + 4y - 7x^2 + 15x - 13 = 0.$$

OR

- 7. a) Find the entire length of the asteroid $x^{2/3} + y^{2/3} = a^{2/3}$.
 - b) Find the envelope of $x\cos^3\theta + y\sin^3\theta = c$, where θ is the parameter.
 - c) Find the volume of the solid obtained by revolving the cardioid $r = a (1 + \cos\theta)$ about the initial line.

PART - D

Answer any one full question:

 $(1 \times 15 = 15)$

8. a) Solve:
$$x \frac{dy}{dx} + (1 - x) y = x^2y^2$$
.

- b) Solve : $x = yP + P^2$.
- c) Verify for exactness and solve :

$$(4x + 3y + 1) dx + (3x + 2y + 1) dy = 0.$$

OR

- 9. a) Solve: $x \frac{dy}{dx} + y \log y = xye^x$.
 - b) Find the general and singular solution of $y = 3px + 6y^2p^2$. (Hint-put $y^3=v$).
 - c) Show that the family of curves $\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} = 1$ is self orthogonal, λ is a parameter.

